Background: Plants of Nitraria, belonging to the Zygophyllaceae family, are not only widely distributed at an altitude of about 1000 m but also at an altitude of about 3000 m, which is a rare phenomenon. However, little is known about the effect of altitude on the accumulation of metabolites in plants of Nitraria. Furthermore, the mechanism of the high-altitude adaptation of Nitraria has yet to be fully elucidated. Methods: In this study, metabolomics and transcriptomics were used to investigate the differential accumulation of metabolites of Nitraria berries and the regulatory mechanisms in different altitudes. Results: As a result, the biosynthesis of flavonoids is the most significant metabolic pathway in the process of adaptation to high altitude, and 5 Cyanidins, 1 Pelargonidin, 3 Petunidins, 1 Peonidin, and 4 Delphinidins are highly accumulated in high-altitude Nitraria. The results of transcriptomics showed that the structural genes C4H (2), F3H, 4CL (2), DFR (2), UFGT (2), and FLS (2) were highly expressed in high-altitude Nitraria. A network metabolism map of flavonoids was constructed, and the accumulation of differential metabolites and the expression of structural genes were analyzed for correlation. Conclusions: In summary, this study preliminarily offers a new understanding of metabolic differences and regulation mechanisms in plants of Nitraria from different altitudes.
Integrated Metabolomic and Transcriptomic Analysis of Nitraria Berries Indicate the Role of Flavonoids in Adaptation to High Altitude.
阅读:9
作者:Zhao Qing, Zhang Jie, Li Yanhong, Yang Zufan, Wang Qian, Jia Qiangqiang
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2024 | 起止号: | 2024 Nov 1; 14(11):591 |
| doi: | 10.3390/metabo14110591 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
