Due to the limited clinical utility of individual biomarkers, there is growing recognition of the need for combining multiple biomarkers as a panel to improve the accuracy and efficacy of disease diagnosis and prognosis. The conventional method to detect multiple analyte species is to construct a sensor array, which consists of an array of individual selective probes for different species. In this work, by using cancer biomarker matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) as model analytes and functionalized nanographene oxide (nGO) as a sensing element, we developed a multiplexing fluorescence sensor in a nonarray format for simultaneous measurement of the activities of multiple proteases. The constructed nGO-based biosensor was rapid, sensitive, and selective and was also utilized for the successful profiling of ADAMs/MMPs in simulated serum samples. Furthermore, we showed that joint entropy and programming could be utilized to guide experiment design, especially in terms of the selection of a subset of proteases from the entire MMPs/ADAMs family as an appropriate biomarker panel. Our developed nGO-based multiplex sensing platform should find useful application in early cancer detection and diagnosis.
Joint Entropy-Assisted Graphene Oxide-Based Multiplexing Biosensing Platform for Simultaneous Detection of Multiple Proteases.
阅读:4
作者:Zhang Youwen, Chen Xiaohan, Yuan Shaoqing, Wang Liang, Guan Xiyun
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2020 | 起止号: | 2020 Nov 17; 92(22):15042-15049 |
| doi: | 10.1021/acs.analchem.0c03007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
