β-galactosidase catalyzes lactose hydrolysis and transfers reactions to produce prebiotics such as galacto-oligosaccharides (GOS) with potential applications in the food industry and pharmaceuticals. However, there is still a need for improved transgalactosylation activity of β-galactosidases and reaction conditions of GOS production in order to maximize GOS output and reduce production costs. In this study, a β-galactosidase gene, galA, from Bacillus circulans was expressed in Pichia pastoris, which not only hydrolyzed lactose but also had strong transgalactosylation activity to produce GOS. Response surface methodology was adopted to investigate the effects of temperature, enzyme concentration, pH, initial lactose concentration, and reaction time on the production of GOS and optimize the reaction conditions for GOS. The optimal pH for the enzyme was 6.0 and remained stable under neutral and basic conditions. Meanwhile, GALA showed most activity at 50°C and retained considerable activity at a lower temperature 30-40°C, indicating this enzyme could work under mild conditions. The enzyme concentration and temperature were found to be the critical parameters affecting the transgalactosylation activity. Response surface methodology showed that the optimal enzyme concentration, initial lactose concentration, temperature, pH, and reaction time were 3.03 U/mL, 500 g/L, 30°C, 5.08, and 4 h, respectively. Under such conditions, the maximum yield of GOS was 252.8 g/L, accounting for approximately 50.56% of the total sugar. This yield can be considered relatively high compared to those obtained from other sources of β-galactosidases, implying a great potential for GALA in the industrial production and application of GOS.
β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity.
阅读:3
作者:Yan Yaru, Guan Weishi, Li Xiaoyi, Gao Kaier, Xu Xinxin, Liu Bo, Zhang Wei, Zhang Yuhong
| 期刊: | Bioengineered | 影响因子: | 4.200 |
| 时间: | 2021 | 起止号: | 2021 Dec;12(1):8908-8919 |
| doi: | 10.1080/21655979.2021.1988370 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
