Quorum sensing (QS) is a density-dependent mechanism allowing bacteria to synchronize their physiological activities, mediated by a wide range of signaling molecules including N-acyl-homoserine lactones (AHLs). Production of AHL has been identified in various marine strains of Proteobacteria. However, the chemical diversity of these molecules still needs to be further explored. In this study, we examined the diversity of AHLs produced by strain MOLA 401, a marine Alphaproteobacterium that belongs to the ubiquitous Rhodobacteraceae family. We combined an original biosensors-based guided screening of extract microfractions with liquid chromatography coupled to mass spectrometry (MS), High Resolution MS/MS and Nuclear Magnetic Resonance. This approach revealed the unsuspected capacity of a single Rhodobacteraceae strain to synthesize 20 different compounds, which are most likely AHLs. Also, some of these AHLs possessed original features that have never been previously observed, including long (up to 19 carbons) and poly-hydroxylated acyl side chains, revealing new molecular adaptations of QS to planktonic life and a larger molecular diversity than expected of molecules involved in cell-cell signaling within a single strain.
Large Diversity and Original Structures of Acyl-Homoserine Lactones in Strain MOLA 401, a Marine Rhodobacteraceae Bacterium.
阅读:6
作者:Doberva Margot, Stien Didier, Sorres Jonathan, Hue Nathalie, Sanchez-Ferandin Sophie, Eparvier Véronique, Ferandin Yoan, Lebaron Philippe, Lami Raphaël
| 期刊: | Frontiers in Microbiology | 影响因子: | 4.500 |
| 时间: | 2017 | 起止号: | 2017 Jun 22; 8:1152 |
| doi: | 10.3389/fmicb.2017.01152 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
