Seed germination is critical for early plantlet development and is tightly controlled by environmental factors. Nevertheless, the signaling networks underlying germination control remain elusive. In this study, the remodeling of Arabidopsis seed phosphoproteome during imbibition was investigated using stable isotope dimethyl labeling and nanoLC-MS/MS analysis. Freshly harvested seeds were imbibed under dark or constant light to restrict or promote germination, respectively. For each light regime, phosphoproteins were extracted and identified from dry and imbibed (6 h, 16 h, and 24 h) seeds. A large repertoire of 10,244 phosphopeptides from 2546 phosphoproteins, including 110 protein kinases and key regulators of seed germination such as Delay Of Germination 1 (DOG1), was established. Most phosphoproteins were only identified in dry seeds. Early imbibition led to a similar massive downregulation in dormant and non-dormant seeds. After 24 h, 411 phosphoproteins were specifically identified in non-dormant seeds. Gene ontology analyses revealed their involvement in RNA and protein metabolism, transport, and signaling. In addition, 489 phosphopeptides were quantified, and 234 exhibited up or downregulation during imbibition. Interaction networks and motif analyses revealed their association with potential signaling modules involved in germination control. Our study provides evidence of a major role of phosphosignaling in the regulation of Arabidopsis seed germination.
Dynamics of Protein Phosphorylation during Arabidopsis Seed Germination.
阅读:9
作者:Baudouin Emmanuel, Puyaubert Juliette, Meimoun Patrice, Blein-Nicolas Mélisande, Davanture Marlène, Zivy Michel, Bailly Christophe
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Jun 24; 23(13):7059 |
| doi: | 10.3390/ijms23137059 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
