Profiling metabolome of mouse embryonic cerebrospinal fluid following maternal immune activation.

阅读:3
作者:Petrova Boryana, Lacey Tiara E, Culhane Andrew J, Cui Jin, Brook Jeannette R, Raskind Alexander, Misra Aditya, Lehtinen Maria K, Kanarek Naama
The embryonic cerebrospinal fluid (eCSF) plays an essential role in the development of the central nervous system (CNS), influencing processes from neurogenesis to lifelong cognitive functions. An important process affecting eCSF composition is inflammation. Inflammation during development can be studied using the maternal immune activation (MIA) mouse model, which displays altered cytokine eCSF composition and mimics neurodevelopmental disorders including autism spectrum disorder (ASD). The limited nature of eCSF as a biosample restricts its research and has hindered our understanding of the eCSF's role in brain pathologies. Specifically, investigation of the small molecule composition of the eCSF is lacking, leaving this aspect of eCSF composition under-studied. We report here the eCSF metabolome as a resource for investigating developmental neuropathologies from a metabolic perspective. Our reference metabolome includes comprehensive MS(1) and MS(2) datasets and evaluates two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). We illustrate the reference metabolome's utility by using untargeted metabolomics to identify eCSF-specific compositional changes following MIA. We uncover MIA-relevant metabolic pathways as differentially abundant in eCSF and validate changes in glucocorticoid and kynurenine pathways through targeted metabolomics. Our resource can guide future studies into the causes of MIA neuropathology and the impact of eCSF composition on brain development.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。