Structural organization of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina acetivorans.

阅读:4
作者:Cossu Matteo, Catlin Daniel, Elliott Sean J, Metcalf William W, Nair Satish K
Enzymes of the 2-oxoacid:ferredoxin oxidoreductase (OFOR) superfamily catalyze the reversible oxidation of 2-oxoacids to acyl-coenzyme A esters and carbon dioxide (CO(2))using ferredoxin or flavodoxin as the redox partner. Although members of the family share primary sequence identity, a variety of domain and subunit arrangements are known. Here, we characterize the structure of a four-subunit family member: the pyruvate:ferredoxin oxidoreductase (PFOR) from the methane producing archaeon Methanosarcina acetivorans (MaPFOR). The 1.92 à resolution crystal structure of MaPFOR shows a protein fold like those of single- or two-subunit PFORs that function in 2-oxoacid oxidation, including the location of the requisite thiamine pyrophosphate (TPP), and three [4Fe-4S] clusters. Of note, MaPFOR typically functions in the CO(2) reductive direction, and structural comparisons to the pyruvate oxidizing PFORs show subtle differences in several regions of catalytical relevance. These studies provide a framework that may shed light on the biochemical mechanisms used to facilitate reductive pyruvate synthesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。