Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Emerging multidrug resistant (MDR) Salmonella typhimurium has raised concern for its effect on pathogenic infection and mortality in humans caused by enteric diseases. To combat these MDR Salmonella typhimurium pathogens, highly effective and broad-spectrum antibiotics such as flufenicol (FFC) need to be evaluated for their potent antibacterial activity against Salmonella typhimurium. However, the low solubility and low oral bioavailability of flufenicol need to be addressed to better combat AMR. In this work, we develop a novel nano-formulation, flufenicol nano-micelles (FTPPM), which are based on d-α-tocopherol polyethylene glycol 1,000 succinate (TPGS)/poloxamer 188 (P188), for the targeted treatment of biofilms formed by drug-resistant Salmonella typhimurium in the intestine. Herein, FTPPM were prepared via a thin film hydration method. The preparation process for the mixed micelles is simple and convenient compared with other existing nanodrug delivery systems, which can further decrease production costs. The optimized FTPPM demonstrated outstanding stability and sustained release. An evaluation of the in vivo anti-drug-resistant Salmonella typhimurium efficacy demonstrated that FTPPM showed a stronger efficacy (68.17 %) than did florfenicol-loaded TPGS polymer micelles (FTPM), flufenicol active pharmaceutical ingredients (FFC-API), and flufenicol commercially available medicine (FFC-CAM), and also exhibited outstanding biocompatibility. Notably, FTPPM also inhibited drug-resistant Salmonella typhimurium from forming biofilms. More importantly, FTPPM effectively restored intestinal flora disorders induced by drug-resistant Salmonella typhimurium in mice. In summary, FTPPM significantly improved the solubility and oral bioavailability of florfenicol, enhancing its efficacy against drug-resistant Salmonella typhimurium both in vitro and in vivo. FTPPM represent a promising drug-resistant Salmonella typhimurium treatment for curbing bacterial resistance via oral administration.
Self-assembled and intestine-targeting florfenicol nano-micelles effectively inhibit drug-resistant Salmonella typhimurium, eradicate biofilm, and maintain intestinal homeostasis.
阅读:6
作者:Zuo Runan, Fu Linran, Pang Wanjun, Kong Lingqing, Weng Liangyun, Sun Zeyuan, Li Ruichao, Qu Shaoqi, Li Lin
| 期刊: | Journal of Pharmaceutical Analysis | 影响因子: | 8.900 |
| 时间: | 2025 | 起止号: | 2025 Jul;15(7):101226 |
| doi: | 10.1016/j.jpha.2025.101226 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
