Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents

棕榈酸通过增强复极化 Kv 电流减弱心肌收缩力

阅读:5
作者:Todd E Haim, Wei Wang, Thomas P Flagg, Michael A Tones, Anthony Bahinski, Randal E Numann, Colin G Nichols, Jeanne M Nerbonne

Abstract

There is considerable evidence to support a role for lipotoxicity in the development of diabetic cardiomyopathy, although the molecular links between enhanced saturated fatty acid uptake/metabolism and impaired cardiac function are poorly understood. In the present study, the effects of acute exposure to the saturated fatty acid, palmitate, on myocardial contractility and excitability were examined directly. Exposure of isolated (adult mouse) ventricular myocytes to palmitate, complexed to bovine serum albumin (palmitate:BSA) as in blood, rapidly reduced (by 54+/-4%) mean (+/-SEM) unloaded fractional cell shortening. The amplitudes of intracellular Ca(2+) transients decreased in parallel. Current-clamp recordings revealed that exposure to palmitate:BSA markedly shortened action potential durations at 20%, 50%, and 90% repolarization. These effects were reversible and were occluded when the K(+) in the recording pipettes was replaced with Cs(+), suggesting a direct effect on repolarizing K(+) currents. Indeed, voltage-clamp recordings revealed that palmitate:BSA reversibly and selectively increased peak outward voltage-gated K(+) (Kv) current amplitudes by 20+/-2%, whereas inwardly rectifying K(+) (Kir) currents and voltage-gated Ca(2+) currents were unaffected. Further analyses revealed that the individual Kv current components I(to,f), I(K,slow) and I(ss), were all increased (by 12+/-2%, 37+/-4%, and 34+/-4%, respectively) in cells exposed to palmitate:BSA. Consistent with effects on both components of I(K,slow) (I(K,slow1) and I(K,slow)(2)) the magnitude of the palmitate-induced increase was attenuated in ventricular myocytes isolated from animals in which the Kv1.5 (I(K,slow)(1)) or the Kv2.1 (I(K,slow)(2)) locus was disrupted and I(K,slow)(1) or I(K,slow2) is eliminated. Both the enhancement of I(K,slow) and the negative inotropic effect of palmitate:BSA were reduced in the presence of the Kv1.5 selective channel blocker, diphenyl phosphine oxide-1 (DPO-1).Taken together, these results suggest that elevations in circulating saturated free fatty acids, as occurs in diabetes, can directly augment repolarizing myocardial Kv currents and impair excitation-contraction coupling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。