Protein sulfation can be crucial in regulating protein-protein interactions but remains largely underexplored. Sulfation is nearly isobaric to phosphorylation, making it particularly challenging to investigate using mass spectrometry. The degree to which tyrosine sulfation (sY) is misidentified as phosphorylation (pY) is, thus, an unresolved concern. This study explores the extent of sY misidentification within the human phosphoproteome by distinguishing between sulfation and phosphorylation based on their mass difference. Using Gaussian mixture models (GMMs), we screened â¼45 M peptide-spectrum matches (PSMs) from the PeptideAtlas human phosphoproteome build for peptidoforms with mass error shifts indicative of sulfation. This analysis pinpointed 104 candidate sulfated peptidoforms, backed up by Gene Ontology (GO) terms and custom terms linked to sulfation. False positive filtering by manual annotation resulted in 31 convincing peptidoforms spanning 7 known and 7 novel sY sites. Y47 in calumenin was particularly intriguing since mass error shifts, acidic motif conservation, and MS(2) neutral loss patterns characteristic of sulfation provided strong evidence that this site is sulfated rather than phosphorylated. Overall, although misidentification of sulfation in phosphoproteomics data sets derived from cell and tissue intracellular extracts can occur, it appears relatively rare and should not be considered a substantive confounding factor in high-quality phosphoproteomics data sets.
Searching for Sulfotyrosines (sY) in a HA(pY)STACK.
阅读:13
作者:Tzvetkov Jordan, Eyers Claire E, Eyers Patrick A, Ramsbottom Kerry A, Oswald Sally O, Harris John A, Sun Zhi, Deutsch Eric W, Jones Andrew R
| 期刊: | Journal of Proteome Research | 影响因子: | 3.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 7; 24(3):1250-1264 |
| doi: | 10.1021/acs.jproteome.4c00907 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
