Acetic acid is a byproduct of lignocellulose pretreatment and a potent inhibitor of yeast-based fermentation processes. A thicker yeast plasma membrane (PM) is expected to retard the passive diffusion of undissociated acetic acid into the cell. Molecular dynamic simulations suggest that membrane thickness can be increased by elongating glycerophospholipids (GPL) fatty acyl chains. Previously, we successfully engineered Saccharomyces cerevisiae to increase GPL fatty acyl chain length but failed to lower acetic acid net uptake. Here, we tested whether altering the relative abundance of diacylglycerol (DAG) might affect PM permeability to acetic acid in cells with longer GPL acyl chains (DAG(EN)). To this end, we expressed diacylglycerol kinase α (DGKα) in DAG(EN). The resulting DAG(EN)_Dgkα strain exhibited restored DAG levels, grew in medium containing 13 g/L acetic acid, and accumulated less acetic acid. Acetic acid stress and energy burden were accompanied by increased glucose uptake in DAG(EN)_Dgkα cells. Compared to DAG(EN), the relative abundance of several membrane lipids changed in DAG(EN)_Dgkα in response to acetic acid stress. We propose that the ability to increase the energy supply and alter membrane lipid composition could compensate for the negative effect of high net acetic acid uptake in DAG(EN)_Dgkα under stressful conditions. IMPORTANCE: In the present study, we successfully engineered a yeast strain that could grow under high acetic acid stress by regulating its diacylglycerol metabolism. We compared how the plasma membrane and total cell membranes responded to acetic acid by adjusting their lipid content. By combining physiological and lipidomics analyses in cells cultivated in the absence or presence of acetic acid, we found that the capacity of the membrane to adapt lipid composition together with sufficient energy supply influenced membrane properties in response to stress. We suggest that potentiating the intracellular energy system or enhancing lipid transport to destination membranes should be taken into account when designing membrane engineering strategies. The findings highlight new directions for future yeast cell factory engineering.
Exploring the interplay between yeast cell membrane lipid adaptation and physiological response to acetic acid stress.
阅读:5
作者:Wu Fei, Bettiga Maurizio, Olsson Lisbeth
| 期刊: | Applied and Environmental Microbiology | 影响因子: | 3.700 |
| 时间: | 2024 | 起止号: | 2024 Dec 18; 90(12):e0121224 |
| doi: | 10.1128/aem.01212-24 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
