Anticancer and Antioxidant Effects of Bioactive Peptides from Black Soldier Fly Larvae (Hermetia illucens).

阅读:4
作者:Praseatsook Kwanchanok, Vachiraarunwong Arpamas, Taya Sirinya, Setthaya Phatthawin, Sato Kenji, Wanibuchi Hideki, Wongpoomchai Rawiwan, Dejkriengkraikul Pornngarm, Gi Min, Yodkeree Supachai
BACKGROUND: Protein hydrolysates from insects are recognized for their biological activities. Black soldier fly larvae (BSFL) have drawn attention due to their antioxidant protein hydrolysates. However, research on bioactive peptides derived from these hydrolysates, particularly their cancer chemopreventive potential, remains limited. This study aims to evaluate the antioxidant, anti-inflammatory, antimutagenic, and anticancer activities of BSFL-derived bioactive peptides and explore the molecular mechanisms. METHODS: Alkali-soluble BSFL protein (ASBP) was extracted and hydrolyzed using Alcalase and bromelain under optimized conditions. Antioxidant activity was assessed via FRAP, ABTS, and DPPH assays. The hydrolysate with the highest antioxidant activity was fractionated into molecular weight (MW) groups (>30, 10, and <3 kDa). The bioactivity of fractionated peptides was evaluated through antioxidant, anti-inflammatory (nitric oxide production in RAW 264.7 cells), antimutagenic (Ames test), and anticancer (CCK-8 assay on HCT 116, COLO205, Cw-2, and Caco-2 cells) assays. Mechanistic insights were obtained via microarray and Western blot analyses. Peptides were identified by LC-MS/MS. RESULTS: The ASBP-Alcalase hydrolysate (ASBP-AH) showed optimal antioxidant activity at 3% (w/w) for 4 h. The ASBP-AH 30 (MW > 30 kDa) fraction exhibited the highest antioxidant capacity. In contrast, the ASBP-AH3 (MW < 3 kDa) fraction exhibited significant antimutagenic effects, reduced nitric oxide production, and decreased COLO205 cell viability. Treatment with ASBP-AH3 at its LC(50) dose modulated the SKP2/p21/cyclin D1 pathways. Mostly peptides from ASBP-AH3 were composed of hydrophobic and charged amino acids. CONCLUSIONS: BSFL-derived bioactive peptides exhibit potential as multifunctional agents for cancer chemoprevention. In vivo studies are required to explore their clinical applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。