Silencers are repressive cis-regulatory elements that play crucial roles in transcriptional regulation. Experimental methods for identifying silencers are always costly and time-consuming. Computational methods, which relies on genomic sequence features, have been introduced as alternative approaches. However, silencers do not have significant epigenomic signature. Therefore, we explore a new way to computationally identify silencers, by incorporating chromatin structural information. We propose the SilenceREIN method, which focuses on finding silencers on anchors of chromatin loops. By using graph neural networks, we extracted chromatin structural information from a regulatory element interaction network. SilenceREIN integrated the chromatin structural information with linear genomic signatures to find silencers. The predictive performance of SilenceREIN is comparable or better than other states-of-the-art methods. We performed a genome-wide scanning to systematically find silencers in human genome. Results suggest that silencers are widespread on anchors of chromatin loops. In addition, enrichment analysis of transcription factor binding motif support our prediction results. As far as we can tell, this is the first attempt to incorporate chromatin structural information in finding silencers. All datasets and source codes of SilenceREIN have been deposited in a GitHub repository (https://github.com/JianHPan/SilenceREIN).
SilenceREIN: seeking silencers on anchors of chromatin loops by deep graph neural networks.
阅读:3
作者:Pan Jian-Hua, Du Pu-Feng
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2023 | 起止号: | 2023 Nov 22; 25(1):bbad494 |
| doi: | 10.1093/bib/bbad494 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
