Effect of cholesterol on distribution, cell uptake, and protein corona of lipid microspheres at sites of cardiovascular inflammatory injury.

阅读:17
作者:Li Lingyan, Wu Xingjie, Guo Qianqian, Wang Yu'e, He Zhiyong, Zhang Guangqiong, Liu Shaobo, Shu Liping, Gajendran Babu, Chen Ying, Shen Xiangchun, Tao Ling
Cholesterol (CH) plays a crucial role in enhancing the membrane stability of drug delivery systems (DDS). However, its association with conditions such as hyperlipidemia often leads to criticism, overshadowing its influence on the biological effects of formulations. In this study, we reevaluated the delivery effect of CH using widely applied lipid microspheres (LM) as a model DDS. We conducted comprehensive investigations into the impact of CH on the distribution, cell uptake, and protein corona (PC) of LM at sites of cardiovascular inflammatory injury. The results demonstrated that moderate CH promoted the accumulation of LM at inflamed cardiac and vascular sites without exacerbating damage while partially mitigating pathological damage. Then, the slow cellular uptake rate observed for CH@LM contributed to a prolonged duration of drug efficacy. Network pharmacology and molecular docking analyses revealed that CH depended on LM and exerted its biological effects by modulating peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in vascular endothelial cells and estrogen receptor alpha (ERα) protein levels in myocardial cells, thereby enhancing LM uptake at cardiovascular inflammation sites. Proteomics analysis unveiled a serum adsorption pattern for CH@LM under inflammatory conditions showing significant adsorption with CH metabolism-related apolipoprotein family members such as apolipoprotein A-V (Apoa5); this may be a major contributing factor to their prolonged circulation in vivo and explains why CH enhances the distribution of LM at cardiovascular inflammatory injury sites. It should be noted that changes in cell types and physiological environments can also influence the biological behavior of formulations. The findings enhance the conceptualization of CH and LM delivery, providing novel strategies for investigating prescription factors' bioactivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。