In this work, the entropy generation analysis is extended to the multi-phase fluid flow within a Large Eddy Simulation (LES) framework. The selected study case consists of a generic selective catalytic reduction (SCR) configuration in which the water/AdBlue is injected into a cross-flow of the internal combustion (IC) engine exhaust gas. The adopted numerical modules are first assessed by comparing with experimental data for film thickness in the case of AdBlue injection and then with H(2)O mass fraction and temperature for water injection case. Subsequently, the impact of heat transfer, fluid flow, phase change, mixing and chemical reaction due to AdBlue injection on the entropy generation is assessed. Hence, the individual contributions of viscous and heat dissipation together with the species mixing, chemical reaction during the thermal decomposition of urea into NH(3) and dispersed phase are especially evaluated and analysed. In comparison to the shares of the viscous and mixing processes, the entropy generation is predominated by the heat, chemical and dispersed phase contributions. The influence of the operating parameters such as exhaust gas temperature, flow rate and AdBlue injection on entropy generation is discussed in details. Using a suitable measures, the irreversibility map and some necessary inferences are also provided.
Estimation of Entropy Generation in a SCR-DeNOx System with AdBlue Spray Dynamic Using Large Eddy Simulation.
阅读:3
作者:Nishad Kaushal, Agrebi Senda
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2023 | 起止号: | 2023 Mar 9; 25(3):475 |
| doi: | 10.3390/e25030475 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
