Sigma receptor agonists: receptor binding and effects on mesolimbic dopamine neurotransmission assessed by microdialysis.

阅读:3
作者:Garcés-Ramírez Linda, Green Jennifer L, Hiranita Takato, Kopajtic Theresa A, Mereu Maddalena, Thomas Alexandra M, Mesangeau Christophe, Narayanan Sanju, McCurdy Christopher R, Katz Jonathan L, Tanda Gianluigi
BACKGROUND: Subtypes of sigma (σ) receptors, σ₁ and σ₂, can be pharmacologically distinguished, and each may be involved in substance-abuse disorders. σ-Receptor antagonists block cocaine place conditioning and σ-receptor agonists are self-administered in rats that previously self-administered cocaine. Self-administration of abused drugs has been related to increased dopamine (DA) neurotransmission, however, σ-receptor agonist effects on mesolimbic DA are not fully characterized. METHODS: Receptor-binding studies assessed affinities of σ-receptor ligands for σ-receptor subtypes and the DA transporter; effects on DA transmission in the rat nucleus accumbens shell were assessed using in vivo microdialysis. RESULTS: Cocaine (.1-1.0 mg/kg intravenous [IV]), the nonselective σ(½)-receptor agonist DTG (1.0-5.6 mg/kg IV), and the selective σ₁-receptor agonist PRE-084 (.32-10 mg/kg IV) dose-dependently increased DA to ∼275%, ∼150%, and ∼160% maxima, respectively. DTG-induced stimulation of DA was antagonized by the nonselective σ(½)-receptor antagonist BD 1008 (10 mg/kg intraperitoneal [IP]) and the preferential σ₂-receptor antagonist SN 79 (1-3 mg/kg IP), but not by the preferential σ₁-receptor antagonist, BD 1063 (10-30 mg/kg IP). Neither PRE-084 nor cocaine was antagonized by BD 1063 or BD 1008. CONCLUSIONS: σ-Receptor agonists stimulated DA in a brain area critical for reinforcing effects of cocaine. DTG effects on DA appear to be mediated by σ₂-receptors rather than σ₁-receptors. However, DA stimulation by cocaine or PRE-084 does not likely involve σ-receptors. The relatively low potency on DA transmission of the selective σ₁-receptor agonist, PRE-084, and its previously reported potent reinforcing effects, suggest a dopamine-independent reinforcing pathway that may contribute to substance-abuse disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。