A role for sigma receptors in stimulant self-administration and addiction.

阅读:3
作者:Katz Jonathan L, Hong Weimin C, Hiranita Takato, Su Tsung-Ping
Sigma-1 receptors (σ1Rs) are structurally unique intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to other subcellular compartments, and can influence a host of targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Drugs binding to σRs can induce or block the actions of σRs. Studies indicate that stimulant self-administration induces the reinforcing effects of σR agonists, because of dopamine transporter actions. Once established, the reinforcing effects of σR agonists are independent of dopaminergic mechanisms traditionally thought to be critical to the reinforcing effects of stimulants. Self-administered doses of σR agonists do not increase dopamine concentrations in the nucleus accumbens shell, a transmitter and brain region considered important for the reinforcing effects of abused drugs. However, self-administration of σR agonists is blocked by σR antagonists. Several effects of stimulants have been blocked by σR antagonists, including the reinforcing effects, assessed by a place-conditioning procedure. However, the self-administration of stimulants is largely unaffected by σR antagonists, indicating fundamental differences in the mechanisms underlying these two procedures used to assess the reinforcing effects. When σR antagonists are administered in combination with dopamine uptake inhibitors, an effective and specific blockade of stimulant self-administration is obtained. Actions of stimulant drugs related to their abuse induce unique changes in σR activity and the changes induced potentially create redundant and, once established, independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of stimulant self-administration, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。