While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat (c)), oxygenation (k cat (o)), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23-68 µM), SC/O (57-116mol mol(-1)), and K O (413-2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat (c) for each diatom Rubisco showed less variation (2.1-3.7s(-1)), thus averting the canonical trade-off typically observed between K C and k cat (c) for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily.
Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms.
阅读:5
作者:Young Jodi N, Heureux Ana M C, Sharwood Robert E, Rickaby Rosalind E M, Morel François M M, Whitney Spencer M
| 期刊: | Journal of Experimental Botany | 影响因子: | 5.700 |
| 时间: | 2016 | 起止号: | 2016 May;67(11):3445-56 |
| doi: | 10.1093/jxb/erw163 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
