Light Quantity Impacts Early Response to Cold and Cold Acclimation in Young Leaves of Arabidopsis.

阅读:4
作者:Luklová Markéta, Dubois Marieke, Kameniarová Michaela, Plačková Klára, Novák Jan, Kopecká Romana, Karady Michal, Pavlů Jaroslav, Skalák Jan, Jindal Sunita, Tubić Ljiljana, Quddoos Zainab, Novák Ondřej, Inzé Dirk, Černý Martin
Plant reactions to stress vary with development stage and fitness. This study assessed the relationship between light and chilling stress in Arabidopsis acclimation. By analysing the transcriptome and proteome responses of expanding leaves subjected to varying light intensity and cold, 2251 and 2064 early response genes and proteins were identified, respectively. Many of these represent as a yet unknown part of the early response to cold, illustrating a development-dependent response to stress and duality in plant adaptations. While standard light promoted photosynthetic upregulation, plastid maintenance, and increased resilience, low light triggered a unique metabolic shift, prioritizing ribosome biogenesis and lipid metabolism and attenuating the expression of genes associated with plant immunity. The comparison of early response in young leaves with that in expanded ones showed striking differences, suggesting a sacrifice of expanded leaves to support young ones. Validations of selected DEGs in mutant background confirmed a role of HSP90-1, transcription factor FLZ13, and Phospholipase A1 (PLIP) in response to cold, and the PLIP family emerged as crucial in promoting acclimation and freezing stress tolerance. The findings highlight the dynamic mechanisms that enable plants to adapt to challenging environments and pave the way for the development of genetically modified crops with enhanced freezing tolerance.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。