Second-Coordination-Sphere Effects Reveal Electronic Structure Differences between the Mitochondrial Amidoxime Reducing Component and Sulfite Oxidase.

阅读:10
作者:Struwe Michel A, Yang Jing, Kolanji Kubandiran, Mengell Joshua, Scheidig Axel J, Clement Bernd, Kirk Martin L
A combination of X-ray absorption and low-temperature electronic absorption spectroscopies has been used to probe the geometric and electronic structures of the human mitochondrial amidoxime reducing component enzyme (hmARC1) in the oxidized Mo(VI) and reduced Mo(IV) forms. Extended X-ray absorption fine structure analysis revealed that oxidized enzyme possesses a 5-coordinate [MoO(2)(S(Cys))(PDT)](-) (PDT = pyranopterin dithiolene) active site with a cysteine coordinated to Mo. A 5-coordinate geometry is retained in the reduced state, with the equatorial oxo being protonated. Low-temperature electronic absorption spectroscopy of hmARC1 reveals a spectrum for the oxidized enzyme that is significantly different from what has been reported for sulfite oxidase family enzymes. Time-dependent density functional theory computations on oxidized and reduced hmARC1, and a small molecule analogue for hmARC1(ox), have been used to assist us in making detailed band assignments and developing a greater understanding of enzyme electronic structure contributions to reactivity. Our understanding of the hmARC(red) HOMO and the LUMO of the benzamidoxime substrate reveal a potential π-bonding interaction between these redox orbitals, with two-electron occupation of the substrate LUMO along the reaction coordinate activating the O-N bond for cleavage and promoting oxygen atom transfer to the Mo site.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。