Most Heterogeneous Information Network (HIN) embedding methods use meta-paths to guide random walks to sample from HIN and perform representation learning in order to overcome the bias of traditional random walks that are more biased towards high-order nodes. Their performance depends on the suitability of the generated meta-paths for the current HIN. The definition of meta-paths requires domain expertise, which makes the results overly dependent on the meta-paths. Moreover, it is difficult to represent the structure of complex HIN with a single meta-path. In a meta-path guided random walk, some of the heterogeneous structures (e.g., node type(s)) are not among the node types specified by the meta-path, making this heterogeneous information ignored. In this paper, HeteEdgeWalk, a solution method that does not involve meta-paths, is proposed. We design a dynamically adjusted bidirectional edge-sampling walk strategy. Specifically, edge sampling and the storage of recently selected edge types are used to better sample the network structure in a more balanced and comprehensive way. Finally, node classification and clustering experiments are performed on four real HINs with in-depth analysis. The results show a maximum performance improvement of 2% in node classification and at least 0.6% in clustering compared to baselines. This demonstrates the superiority of the method to effectively capture semantic information from HINs.
HeteEdgeWalk: A Heterogeneous Edge Memory Random Walk for Heterogeneous Information Network Embedding.
阅读:4
作者:Liu Zhenpeng, Zhang Shengcong, Zhang Jialiang, Jiang Mingxiao, Liu Yi
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2023 | 起止号: | 2023 Jun 29; 25(7):998 |
| doi: | 10.3390/e25070998 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
