MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer

miR-106b 和 miR-93 通过 PI3K/Akt 通路抑制 PTEN 来调节乳腺癌细胞进展

阅读:7
作者:Nana Li, Yuan Miao, Yujia Shan, Bing Liu, Yang Li, Lifen Zhao, Li Jia

Abstract

Accumulating evidences have revealed that dysregulated microRNAs (miRNAs) involve in the tumorigenesis, progression and even lead to poor prognosis of various carcinomas, including breast cancer. MiRNA-106b-5p (miR-106b) and miRNA-93-5p (miR-93) levels were confirmed to be significantly upregulated in breast cancer clinical samples (n=36) and metastatic cell line (MDA-MB-231) compared with those in the paired adjacent tissues and normal breast epithelial cell line (MCF-10A). Moreover, further research stated that the capability of migration, invasion and proliferation changed along with the altered expression of miR-106b and miR-93 in breast cancer. PTEN, the tumor-suppressor gene, was discovered to be reduced in breast cancer tissues or MDA-MB-231 cells with high levels of miR-106b and miR-93, which were inversely expressed in PTEN overexpression tissues or cells. Based on the investigation, miR-106b and miR-93 induced the migration, invasion and proliferation and simultaneously enhanced the activity of phosphatidylinositol-3 kinase (PI3K)/Akt pathway of MCF-7 cells, which could be blocked by upregulation of PTEN. Furthermore, suppression of PTEN reversed the function induced by anti-miR-106b and anti-miR-93 in MDA-MB-231 cells, indicating that PTEN was directly targeted by these miRNAs and acted as the potential therapeutic target for breast cancer therapy. In short, reductive PTEN mediated by miR-106b and miR-93 promoted cell progression through PI3K/Akt pathway in breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。