Lyophilization is often employed to transform nanoparticle suspensions to stable solid forms. This work proposed Neurofuzzy Logic (NFL) to better understand the lyophilization process of Nanostructured Lipid Carriers' (NLCs) dispersions and the carbohydrate cryoprotectants' (CPs) performance in these processes. NLCs were produced by hot homogenization, frozen at different speeds, and lyophilized using several CPs at variable concentrations. NLCs were characterized, and results were expressed as increase in particle size (Πsize), polydispersity (ΠPdI), and zeta potential (ΠZP) of lyophilized powders (LP) regarding initial dispersions. CPs were classified according to their molecular weights (MW), and the osmolarities (Π) of CPs solutions were also determined. Databases obtained were finally modelled through FormRules(®) (Intelligensys Ltd., Kirkwall, Scotland, UK), an NFL software. NFL models revealed that CPs' MW determines the optimal freezing conditions and CPs' proportions. The knowledge generated allowed the establishment of a traffic light system intended to successfully select and apply sugars for nanoparticles lyophilization.
A Traffic Light System to Maximize Carbohydrate Cryoprotectants' Effectivity in Nanostructured Lipid Carriers' Lyophilization.
阅读:5
作者:Rouco Helena, Diaz-Rodriguez Patricia, Guillin Alba, Remuñán-López Carmen, Landin Mariana
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2021 | 起止号: | 2021 Aug 25; 13(9):1330 |
| doi: | 10.3390/pharmaceutics13091330 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
