Neurotoxic effects of oxaliplatin chemotherapy, including proprioceptive impairments, are debilitating and dose limiting. Here, we sought to determine whether oxaliplatin interrupts normal proprioceptive feedback by impairing sensory transduction of muscle length and force by neurons that are not damaged by dying-back neuropathy. Oxaliplatin was administered over 4 wk to rats in doses that produced systemic changes, e.g., decreased platelets and stunted weight gain, but no significant abnormality in the terminal ends of primary muscle spindle sensory neurons. The absence of neuropathy enabled the determination of whether oxaliplatin caused functional deficits in sensory encoding without the confounding issue of axon death. Rats were anesthetized, and action potentials encoding muscle stretch and contraction were recorded intra-axonally from dorsal roots. In striking contrast with normal proprioceptors, those from oxaliplatin-treated rats typically failed to sustain firing during static muscle stretch. The ability of spindle afferents to sustain and centrally conduct trains of action potentials in response to rapidly repeated transient stimuli, i.e., vibration, demonstrated functional competence of the parent axons. These data provide the first evidence that oxaliplatin causes persistent and selective deficits in sensory transduction that are not due to axon degeneration. Our findings raise the possibility that even those axons that do not degenerate after oxaliplatin treatment may have functional deficits that worsen outcome.
Oxaliplatin neurotoxicity of sensory transduction in rat proprioceptors.
阅读:5
作者:Bullinger Katie L, Nardelli Paul, Wang Qingbo, Rich Mark M, Cope Timothy C
| 期刊: | Journal of Neurophysiology | 影响因子: | 2.100 |
| 时间: | 2011 | 起止号: | 2011 Aug;106(2):704-9 |
| doi: | 10.1152/jn.00083.2011 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
