BACKGROUND: Functional interaction networks, where edges connect genes likely to operate in the same biological process or pathway, can be inferred from CRISPR knockout screens in cancer cell lines. Genes with similar knockout fitness profiles across a sufficiently diverse set of cell line screens are likely to be co-functional, and these "coessentiality" networks are increasingly powerful predictors of gene function and biological modularity. While several such networks have been published, most use different algorithms for each step of the network construction process. RESULTS: In this study, we identify an optimal measure of functional interaction and test all combinations of options at each step-essentiality scoring, sample variance and covariance normalization, and similarity measurement-to identify best practices for generating a functional interaction network from CRISPR knockout data. We show that Bayes Factor and Ceres scores give the best results, that Ceres outperforms the newer Chronos scoring scheme, and that covariance normalization is a critical step in network construction. We further show that Pearson correlation, mathematically identical to ordinary least squares after covariance normalization, can be extended by using partial correlation to detect and amplify signals from "moonlighting" proteins which show context-dependent interaction with different partners. CONCLUSIONS: We describe a systematic survey of methods for generating coessentiality networks from the Cancer Dependency Map data and provide a partial correlation-based approach for exploring context-dependent interactions.
Optimal construction of a functional interaction network from pooled library CRISPR fitness screens.
阅读:3
作者:Gheorghe Veronica, Hart Traver
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2022 | 起止号: | 2022 Nov 28; 23(1):510 |
| doi: | 10.1186/s12859-022-05078-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
