Thermoelectric (TE) materials have garnered widespread research interest owing to their capability for direct heat-to-electricity conversion. Binary indium-based chalcogenides (In-X, X = Te, Se, S) stand out in inorganic materials by virtue of their relatively low thermal conductivity. For example, In(4)Se(2.35) shows a low thermal conductivity of 0.74âW m(-1) K(-1) and an impressive zT value of 1.48 along the b-c plane at 705 K, as a result of structural anisotropy. Here, we review the structural features and recent research progress in the TE field for In-X materials. It begins by presenting the characteristics of crystal structure, electronic band structure, and phonon dispersion, aiming to microscopically understand the similarity/dissimilarity among these In-X compounds, notably the role of unconventional bonds (such as In-In) in modulating the band structures and lattice vibrations. Furthermore, TE optimization strategies of such materials were classified and discussed, including defect engineering, crystal orientation engineering, nanostructuring, and grain size engineering. The final section provides an overview of recent progress in optimizing TE properties of indium tellurides, indium selenides, and indium sulfides. An outlook is also presented on the major challenges and opportunities associated with these material systems for future TE applications. This Review is expected to provide critical insights into the development of new strategies to design binary indium-based chalcogenides as promising TE materials in the future.
Structural Characteristics and Recent Advances in Thermoelectric Binary Indium Chalcogenides.
阅读:14
作者:Wu Yasong, Zhou Binjie, Liu Lu, Dai Shengnan, Song Lirong, Yang Jiong
| 期刊: | Research (Wash D C) | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 10; 8:0727 |
| doi: | 10.34133/research.0727 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
