Structural Characteristics and Recent Advances in Thermoelectric Binary Indium Chalcogenides.

阅读:5
作者:Wu Yasong, Zhou Binjie, Liu Lu, Dai Shengnan, Song Lirong, Yang Jiong
Thermoelectric (TE) materials have garnered widespread research interest owing to their capability for direct heat-to-electricity conversion. Binary indium-based chalcogenides (In-X, X = Te, Se, S) stand out in inorganic materials by virtue of their relatively low thermal conductivity. For example, In(4)Se(2.35) shows a low thermal conductivity of 0.74 W m(-1) K(-1) and an impressive zT value of 1.48 along the b-c plane at 705 K, as a result of structural anisotropy. Here, we review the structural features and recent research progress in the TE field for In-X materials. It begins by presenting the characteristics of crystal structure, electronic band structure, and phonon dispersion, aiming to microscopically understand the similarity/dissimilarity among these In-X compounds, notably the role of unconventional bonds (such as In-In) in modulating the band structures and lattice vibrations. Furthermore, TE optimization strategies of such materials were classified and discussed, including defect engineering, crystal orientation engineering, nanostructuring, and grain size engineering. The final section provides an overview of recent progress in optimizing TE properties of indium tellurides, indium selenides, and indium sulfides. An outlook is also presented on the major challenges and opportunities associated with these material systems for future TE applications. This Review is expected to provide critical insights into the development of new strategies to design binary indium-based chalcogenides as promising TE materials in the future.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。