Maximizing H(2) Production from a Combination of Catalytic Partial Oxidation of CH(4) and Water Gas Shift Reaction.

阅读:4
作者:Tepamatr Pannipa, Rungsri Pattarapon, Daorattanachai Pornlada, Laosiripojana Navadol
A single-bed and dual-bed catalyst system was studied to maximize H(2) production from the combination of partial oxidation of CH(4) and water gas shift reaction. In addition, the different types of catalysts, including Ni, Cu, Ni-Re, and Cu-Re supported on gadolinium-doped ceria (GDC) were investigated under different operating conditions of temperature (400-650 °C). Over Ni-based catalysts, methane can easily dissociate on a Ni surface to give hydrogen and carbon species. Then, carbon species react with lattice oxygen of ceria-based material to form CO. The addition of Re to Ni/GDC enhances CH(4) dissociation on the Ni surface and increases oxygen storage capacity in the catalyst, thus promoting carbon elimination. In addition, the results showed that a dual-bed catalyst system exhibited catalytic activity better than a single-bed catalyst system. The dual-bed catalyst system, by the combination of 1%Re4%Ni/GDC as a partial oxidation catalyst and 1%Re4%Cu/GDC as a water gas shift catalyst, provided the highest CH(4) conversion and H(2) yield. An addition of Re onto Ni/GDC and Cu/GDC caused an increase in catalytic performance because Re addition could improve the catalyst reducibility and increase metal surface area, as more of their surface active sites are exposed to reactants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。