Design and optimization of imageable microspheres for locoregional cancer therapy.

阅读:3
作者:Kettlewell Brenna, Armstrong Andrea, Levin Kirill, Salem Riad, Kim Edward, Lewandowski Robert J, Loizides Alexander, Abraham Robert J, Boyd Daniel
Transarterial radioembolization (TARE) is an increasingly important technique for treating liver-based malignancies. Personalized treatment planning and dosimetry are not yet possible due to poor imageability of existing TARE agents. This study presents the design and development of a cohort of imageable glass microspheres that are compatible with readily available imaging equipment, including single-photon emission computed tomography (SPECT) and computed tomography (CT). A statistical modelling approach was used to investigate how the addition of holmium (Ho), a high atomic number and high k-edge element, to a Y(2)O(3)-Al(2)O(3)-SiO(2) (YAS) glass matrix impacts material properties such as density, CT imageability, and glass transition temperature (T(g)). The microspheres demonstrated excellent radiopacity, with Hounsfield Unit (HU) values ranging up to ~ 19,800 at 70 kVp, high thermal stability, exhibiting T(g) values up to 895 °C, no cytotoxic potential, and negligible ion leaching pre- and post-irradiation to 2600 GBq/g Ho-166, supporting their safety and efficacy for locoregional therapies. Statistical modelling elucidated how the fraction of holmium oxide content within the glass matrix impacts density, CT imageability, and T(g). The ability to visualize the microspheres intra- and post-operatively via CT and SPECT imaging, combined with stable radionuclide incorporation and high achievable specific activity, marks a significant advancement in TARE, and represents an opportunity to expand applicability to cancers beyond the liver.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。