Three Schiff base compounds, N(1),N(2) -bis(3-nitrobenzylidene)phenylene diamine (NBBA), 2-methyl-N-(3-nitrobenzylidene)aniline (MNBA) and N-(2-chlorobenzylidene)-4-nitroaniline (CBNA) were synthesized, characterised and applied for the first time as potential mild steel (MS) corrosion inhibitors in 1 M HCl at 30 °C. Fourier transform infra-red (FTIR), (1)H, (13)C Nuclear magnetic resonance (NMR) and Mass spectrometry (MS) were used for the characterisation of the compounds. The electrochemical studies and evaluation of corrosion inhibition potency were achieved using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. Density functional theory (DFT) calculations were further employed to describe the electronic distribution on the molecules and potential sites that aided corrosion inhibition. The results of the employed characterisation techniques confirmed the proposed structures of the compounds with the MS revealing the exact molecular mass of the compounds. Electrochemical results showed that the trend in inhibition efficiency of the three compounds was in the order: MNBA > NBBA > CBNA. MNBA recorded the highest inhibition efficiency at 100 ppm. Corrosion kinetics of the set of inhibitors was found to prefer the Langmuir adsorption isotherm with both physisorption and chemisorption mechanisms as revealed by ÎG values. In an effort to develop efficient corrosion inhibitors with non-toxic effect, low cost and multiple adsorption centres, these Schiff bases are presented.
Synthesis and characterization of Schiff bases NBBA, MNBA and CNBA.
阅读:4
作者:Elemike Elias E, Nwankwo Henry U, Onwudiwe Damian C
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2018 | 起止号: | 2018 Jul 2; 4(7):e00670 |
| doi: | 10.1016/j.heliyon.2018.e00670 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
