Propensity score and doubly robust methods for estimating the effect of treatment on censored cost.

阅读:2
作者:Li Jiaqi, Handorf Elizabeth, Bekelman Justin, Mitra Nandita
The estimation of treatment effects on medical costs is complicated by the need to account for informative censoring, skewness, and the effects of confounders. Because medical costs are often collected from observational claims data, we investigate propensity score (PS) methods such as covariate adjustment, stratification, and inverse probability weighting taking into account informative censoring of the cost outcome. We compare these more commonly used methods with doubly robust (DR) estimation. We then use a machine learning approach called super learner (SL) to choose among conventional cost models to estimate regression parameters in the DR approach and to choose among various model specifications for PS estimation. Our simulation studies show that when the PS model is correctly specified, weighting and DR perform well. When the PS model is misspecified, the combined approach of DR with SL can still provide unbiased estimates. SL is especially useful when the underlying cost distribution comes from a mixture of different distributions or when the true PS model is unknown. We apply these approaches to a cost analysis of two bladder cancer treatments, cystectomy versus bladder preservation therapy, using SEER-Medicare data. Copyright © 2015 John Wiley & Sons, Ltd.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。