BACKGROUND: Necroptosis is a new form of programmed cell death that is associated with cancer initiation, progression, immunity, and chemoresistance. However, the roles of necroptosis-related genes (NRGs) in colorectal cancer (CRC) have not been explored comprehensively. METHODS: In this study, we obtained NRGs and performed consensus molecular subtyping by "ConsensusClusterPlus" to determine necroptosis-related subtypes in CRC bulk transcriptomic data. The ssGSEA and CIBERSORT algorithms were used to evaluate the relative infiltration levels of different cell types in the tumor microenvironment (TME). Single-cell transcriptomic analysis was performed to confirm classification related to NRGs. NRG_score was developed to predict patients' survival outcomes with low-throughput validation in a patients' cohort from Fudan University Shanghai Cancer Center. RESULTS: We identified three distinct necroptosis-related classifications (NRCs) with discrepant clinical outcomes and biological functions. Characterization of TME revealed that there were two stable necroptosis-related phenotypes in CRC: a phenotype characterized by few TME cells infiltration but with EMT/TGF-pathways activation, and another phenotype recognized as immune-excluded. NRG_score for predicting survival outcomes was established and its predictive capability was verified. In addition, we found NRCs and NRG_score could be used for patient or drug selection when considering immunotherapy and chemotherapy. CONCLUSIONS: Based on comprehensive analysis, we revealed the potential roles of NRGs in the TME, and their correlations with clinicopathological parameters and patients' prognosis in CRC. These findings could enhance our understanding of the biological functions of necroptosis, which thus may aid in prognosis prediction, drug selection, and therapeutics development.
Bulk and single-cell transcriptome profiling reveal necroptosis-based molecular classification, tumor microenvironment infiltration characterization, and prognosis prediction in colorectal cancer.
阅读:2
作者:Luo Wenqin, Xiang Wenqiang, Gan Lu, Che Ji, Li Jing, Wang Yichao, Han Lingyu, Gu Ruiqi, Ye Li, Wang Renjie, Zhang Xiuping, Xu Ye, Dai Weixing, Mo Shaobo, Li Qingguo, Cai Guoxiang
| 期刊: | Journal of Translational Medicine | 影响因子: | 7.500 |
| 时间: | 2022 | 起止号: | 2022 May 19; 20(1):235 |
| doi: | 10.1186/s12967-022-03431-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
