In order to alleviate environmental problems and reduce CO(2) emissions, geopolymers had drew attention as a kind of alkali-activated materials. Geopolymers are easier access to raw materials, green and environment friendly than traditional cement industry. Its special reaction mechanism and gel structure show excellent characteristics such as quick hardening, high strength, acid and alkali resistance. In this paper, geopolymer pastes were made with metakaolin (MK) and ground granulated blast furnace slag (GGBFS) as precursors. The effects of liquid-solid ratio (L/S) and modulus of sodium silicate (Ms) on the performances of MK-GGBFS based geopolymer paste (MSGP) were characterized by workability, strength and microstructural tests. The regression equations were obtained by central composite design method to optimize the mix design of MSGP. The goodness of fit of all the equations were more than 98%. Based on the results of experiments, the optimum mix design was found to have L/S of 0.75 and Ms of 1.55. The workability of MSGP was significantly improved while maintaining the strength under the optimum mix design. The initial setting time of MSGP decreased by 71.8%, while both of the fluidity and 28-d compressive strength increased by 15.3%, compared with ordinary Portland cement pastes. Therefore, geopolymers are promising alternative cementitious material, which can consume a large amount of MK and GGBFS and promote green and clean production.
Research on mix design and mechanical performances of MK-GGBFS based geopolymer pastes using central composite design method.
阅读:3
作者:Yao Ziqi, Luo Ling, Qin Yongjun, Cheng Jiangbo, Qu Changwei
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Apr 20; 14(1):9101 |
| doi: | 10.1038/s41598-024-59872-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
