Insights into bacterial cellulose for adsorption and sustained-release mechanism of flavors.

阅读:4
作者:Hu Jingyi, Wang Longfei, Xiao Menglan, Chen Weihua, Zhou Meng, Hu Yihan, Zhang Yujie, Lai Miao, He Aimin, Zhao Mingqin
The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.98 mg/g) was obtained through response surface optimization. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Flourier transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were utilized to verify the successful adsorption. Thermo-gravimetry (TG) analysis showed that the release of citral was delayed. Temperature responsiveness indicated the release of citral was controlled by internal diffusion. Density functional theory (DFT) calculations indicated the interactions between BC and citral was mainly composed of van der Waals forces and hydrogen bonds. BC-Citral also exhibited excellent antibacterial capability. This work provided a new approach for constructing controlled-release materials of citral, which offered good application prospects in food industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。