Functional relationship of furfural yields and the hemicellulose-derived sugars in the hydrolysates from corncob by microwave-assisted hydrothermal pretreatment.

阅读:3
作者:Li Huiling, Chen Xiaofeng, Ren Junli, Deng Hao, Peng Feng, Sun Runcang
BACKGROUND: Corncob as one of the most suitable feedstock for the production of a variety of high-value-added chemicals is receiving increasing attention worldwide because of the characteristics of high carbohydrate (cellulose and hemicelluloses) contents and high energy densities. Furfural produced from hemicelluloses is a highly versatile and key feedstock used in the manufacture of a wide range of biofuel and important chemicals in different fields. Achieving high furfural yields from corncob combining green approaches and efficient equipment has the promising potential for biomass-to-biofuel technologies. To understand the dissolving mechanism of corncob sugars and reveal the relationship between the hydrolysate composition and furfural yields, a two-step approach was proposed using microwave-assisted hydrothermal pretreatment and subsequently heterogeneous catalytic process. RESULTS: Released hemicelluloses in the first stage were mainly in forms of monosaccharide, oligosaccharides, and water-soluble polysaccharide. Hydrolysates with the maximum xylose content (99.94 mg g(-1), 160 °C, 90 min), the maximum xylobiose content (20.89 mg g(-1), 180 °C, 15 min), and the maximum total xylose content in monosaccharide and oligosaccharides (DP ≤ 6) (272.06 mg g(-1), 160 °C, 60 min) were further converted to furfural using tin-loaded montmorillonite as the catalyst in a biphasic system. The highest furfural yield (57.80 %) was obtained at 190 °C for 10 min from hydrolysates with the maximum xylose content. Moreover, controlled experiments showed that furfural yields from corncob hydrolysates were higher than those from the pure xylose solutions, and lower initial xylose concentration may be in favor of the furfural production. CONCLUSIONS: This work provides an efficient approach to produce furfural by a two-step process for the biomass-to-biofuel industry. Results indicated that the production of furfural from biomass raw materials can be controlled by the depolymerization degree of hemicelluloses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。