Investigating the relationship between CSAT scores and prefrontal fNIRS signals during cognitive tasks using a quantum annealing algorithm.

阅读:3
作者:Kim Yeaju, Choi Junggu, Kim Bora, Park Yongwan, Cha Jihyun, Choi Jongkwan, Han Sanghoon
Academic achievement is a critical measure of intellectual ability, prompting extensive research into cognitive tasks as potential predictors. Neuroimaging technologies, such as functional near-infrared spectroscopy (fNIRS), offer insights into brain hemodynamics, allowing understanding of the link between cognitive performance and academic achievement. Herein, we explored the association between cognitive tasks and academic achievement by analyzing prefrontal fNIRS signals. A novel quantum annealer (QA) feature selection algorithm was applied to fNIRS data to identify cognitive tasks correlated with CSAT scores. Twelve features (signal mean, median, variance, peak, number of peaks, sum of peaks, range, minimum, kurtosis, skewness, standard deviation, and root mean square) were extracted from fNIRS signals at two time windows (10- and 60-s) to compare results from various feature variable conditions. The feature selection results from the QA-based and XGBoost regressor algorithms were compared to validate the former's performance. In a two-step validation process using multiple linear regression models, model fitness (adjusted R(2)) and model prediction error (RMSE) values were calculated. The quantum annealer demonstrated comparable performance to classical machine learning models, and specific cognitive tasks, including verbal fluency, recognition, and the Corsi block tapping task, were correlated with academic achievement. Group analyses revealed stronger associations between Tower of London and N-back tasks with higher CSAT scores. Quantum annealing algorithms have significant potential in feature selection using fNIRS data, and represents a novel research approach. Future studies should explore predictors of academic achievement and cognitive ability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。