Geniposide alleviated bile acid-associated NLRP3 inflammasome activation by regulating SIRT1/FXR signaling in bile duct ligation-induced liver fibrosis

栀子苷通过调节 SIRT1/FXR 信号传导减轻胆管结扎诱发的肝纤维化中胆汁酸相关的 NLRP3 炎症小体的活化

阅读:5
作者:Tingting Qin, Muhammad Hasnat, Ziwei Wang, Hozeifa Mohamed Hassan, Yang Zhou, Ziqiao Yuan, Wenzhou Zhang

Background

Geniposide (GE), the active compound derived from Gardeniae Fructus, possesses valuable bioactivity for liver diseases, but GE effects on bile duct ligation (BDL)-induced cholestasis remain unclear. This study aimed to elucidate the influence of GE on BDL-induced liver fibrosis and to investigate the underlying mechanisms.

Conclusion

This study first proved the hepaprotective effect of GE on liver fibrosis in BDL mice, which was closely associated with the restoration of BA homeostasis and NLRP3 inflammasome inhibition. The activation of SIRT1 and the subsequent FXR deacetylation restored the BA profiles, especially CDCA, TUDCA, and TCDCA contents, which was the main contributor to NLRP3 inhibition and the hepaprotective effect of GE. Overall, our work provides novel insights that GE as well as Gardeniae Fructus might be the potential attractive candidate for ameliorating BDL-induced liver fibrosis.

Methods

GE (25 or 50 mg/kg) were intragastrical administered to C57BL/6 J mice for two weeks to characterize the hepatoprotective effect of GE on BDL-induced liver fibrosis. NLRP3 inflammasome activation was detected in vivo, and BMDMs were isolated to explore whether GE directly inhibited NLRP3 inflammasome activation. Serum bile acid (BA) profiles were assessed utilizing UPLC-MS/MS, and the involvement of SIRT1/FXR pathways was identified to elucidate the role of SIRT1/FXR in the hepaprotective effect of GE. The veritable impact of SIRT1/FXR signaling was further confirmed by administering the SIRT1 inhibitor EX527 (10 mg/kg) to BDL mice treated with GE.

Results

GE treatment protected mice from BDL-induced liver fibrosis, with NLRP3 inflammasome inhibition. However, development in vitro experiments revealed that GE could not directly inhibit NLRP3 activation under ATP, monosodium urate, and nigericin stimulation. Further mechanistic data showed that GE activated SIRT1, which subsequently deacetylated FXR and restored CDCA, TUDCA, and TCDCA levels, thereby contributing to the observed hepaprotective effect of GE. Notably, EX527 treatment diminished the hepaprotective effect of GE on BDL-induced liver fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。