Tailoring Polymeric Scaffolds with Buddleja globosa Extract for Dual Antimicrobial and Biocompatible Wound Healing Applications.

阅读:3
作者:Ceriani Ricardo, Cherif-Pino Daniel A, Pérez-Basáez Pamela, Escobar Marcela, Leyton Patricio, Weinstein-Oppenheimer Caroline R, Moraga-Espinoza Daniel F, Bahamondez-Canas Tania F
Integrating traditional herbal extracts into modern biomaterials offers a promising route for advanced wound care. A standardized Buddleja globosa Hope extract (BG-126), recognized for its therapeutic value, was incorporated into polymeric scaffolds with variable composition to explore their potential in promoting wound healing and controlling infections. This work aimed to identify the polymeric composition of a scaffold with BG-126 that maximizes its compatibility and antimicrobial properties. Scaffolds were developed by lyophilization using a Box-Behnken design (BBD) with chitosan, hyaluronic acid, and gelatin content as study factors. Thirteen scaffold formulations were tested for their antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa, including biofilm forms, as well as for their biocompatibility with normal human fibroblasts. Structural and physical properties, such as the moisture content and swelling capacity, were evaluated. The best-performing scaffold was analyzed using Raman spectroscopy. The chitosan content was strongly associated with antimicrobial efficacy, while gelatin enhanced fibroblast compatibility (R(2) ≥ 0.9). No correlations were identified between the polymeric content and biofilm inhibition or physical properties. BG-126-loaded scaffolds reduced planktonic and biofilm proliferation and improved fibroblast compatibility compared to the control scaffold (without BG-126). The results support the rational design of botanical-loaded scaffolds with targeted properties for wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。