Adsorption of ice-binding proteins onto whole ice crystal surfaces does not necessarily confer a high thermal hysteresis activity

冰结合蛋白吸附在整个冰晶表面并不一定具有较高的热滞活性

阅读:4
作者:Tatsuya Arai, Akari Yamauchi, Yue Yang, Shiv Mohan Singh, Yuji C Sasaki, Sakae Tsuda

Abstract

Many psychrophilic microorganisms synthesize ice-binding proteins (IBPs) to survive the cold. The functions of IBPs are evaluated by the effect of the proteins on the nonequilibrium water freezing-point depression, which is called "thermal hysteresis (TH)", and the inhibitory effect of the proteins on the growth of larger ice crystals, which is called "ice recrystallization inhibition (IRI)". To obtain mechanical insight into the two activities, we developed a modified method of ice affinity purification and extracted two new IBP isoforms from Psychromyces glacialis, an Arctic glacier fungus. One isoform was found to be an approximately 25 kDa protein (PsgIBP_S), while the other is a 28 kDa larger protein (PsgIBP_L) that forms an intermolecular dimer. Their TH activities were less than 1 °C at millimolar concentrations, implying that both isoforms are moderately active but not hyperactive IBP species. It further appeared that both isoforms exhibit high IRI activity even at submicromolar concentrations. Furthermore, the isoforms can bind to the whole surface of a hemispherical single ice crystal, although such ice-binding was generally observed for hyperactive IBP species. These results suggest that the binding ability of IBPs to whole ice crystal surfaces is deficient for hyperactivity but is crucial for significant IRI activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。