In Service Performance of Toughened PHBV/TPU Blends Obtained by Reactive Extrusion for Injected Parts.

阅读:4
作者:Samaniego-Aguilar Kerly, Sánchez-Safont Estefanía, Arrillaga Alex, Anakabe Jon, Gamez-Perez Jose, Cabedo Luis
Moving toward a more sustainable production model based on a circular economy, biopolymers are considered as one of the most promising alternatives to reduce the dependence on oil-based plastics. Polyhydroxybutyrate-co-valerate (PHBV), a bacterial biopolyester from the polyhydroxialkanoates (PHAs) family, seems to be an attractive candidate to replace commodities in many applications such as rigid packaging, among others, due to its excellent overall physicochemical and mechanical properties. However, it presents a relatively poor thermal stability, low toughness and ductility, thus limiting its applicability with respect to other polymers such as polypropylene (PP). To improve the performance of PHBV, reactive blending with an elastomer seems to be a proper cost-effective strategy that would lead to increased ductility and toughness by rubber toughening mechanisms. Hence, the objective of this work was the development and characterization of toughness-improved blends of PHBV with thermoplastic polyurethane (TPU) using hexamethylene diisocyanate (HMDI) as a reactive extrusion agent. To better understand the role of the elastomer and the compatibilizer, the morphological, rheological, thermal, and mechanical behavior of the blends were investigated. To explore the in-service performance of the blends, mechanical and long-term creep characterization were conducted at three different temperatures (-20, 23, 50 °C). Furthermore, the biodegradability in composting conditions has also been tested. The results showed that HMDI proved its efficiency as a compatibilizer in this system, reducing the average particle size of the TPU disperse phase and enhancing the adhesion between the PHBV matrix and TPU elastomer. Although the sole incorporation of the TPU leads to slight improvements in toughness, the compatibilizer plays a key role in improving the overall performance of the blends, leading to a clear improvement in toughness and long-term behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。