Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications

通过磁场对磁性和导电水凝胶网络进行远程时空控制以实现软电子应用

阅读:4
作者:Anna Puiggalí-Jou, Ismael Babeli, Joan Josep Roa, Justin O Zoppe, Jaume Garcia-Amorós, Maria-Pau Ginebra, Carlos Alemán, Jose García-Torres

Abstract

Multifunctional hydrogels are a class of materials offering new opportunities for interfacing living organisms with machines due to their mechanical compliance, biocompatibility, and capacity to be triggered by external stimuli. Here, we report a dual magnetic- and electric-stimuli-responsive hydrogel with the capacity to be disassembled and reassembled up to three times through reversible cross-links. This allows its use as an electronic device (e.g., temperature sensor) in the cross-linked state and spatiotemporal control through narrow channels in the disassembled state via the application of magnetic fields, followed by reassembly. The hydrogel consists of an interpenetrated polymer network of alginate (Alg) and poly(3,4-ethylenedioxythiophene) (PEDOT), which imparts mechanical and electrical properties, respectively. In addition, the incorporation of magnetite nanoparticles (Fe3O4 NPs) endows the hydrogel with magnetic properties. After structural, (electro)chemical, and physical characterization, we successfully performed dynamic and continuous transport of the hydrogel through disassembly, transporting the polymer-Fe3O4 NP aggregates toward a target using magnetic fields and its final reassembly to recover the multifunctional hydrogel in the cross-linked state. We also successfully tested the PEDOT/Alg/Fe3O4 NP hydrogel for temperature sensing and magnetic hyperthermia after various disassembly/re-cross-linking cycles. The present methodology can pave the way to a new generation of soft electronic devices with the capacity to be remotely transported.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。