Implementation and prospective performance evaluation of an intraoperative duration prediction model using high throughput real-time data.

阅读:5
作者:Jiao York, Kannampallil Thomas
BACKGROUND: Accurate real-time prediction of intraoperative duration can contribute to improved perioperative outcomes. We implemented a data pipeline for extraction of real-time data from nascent anaesthesia records and silently deployed a predictive machine learning (ML) algorithm. METHODS: Clinical variables were retrieved from the electronic health record via a third-party clinical decision support platform and contemporaneously ingested into a previously developed ML model. The model was trained using 3 months data, and performance was subsequently evaluated over 10 months using continuous ranked probability score. RESULTS: The ML model made 6 173 435 predictions on 62 142 procedures. Mean continuous ranked probability score for the ML model was 27.19 (standard error 0.016) min compared with 51.66 (standard error 0.029) min for the bias-corrected scheduled duration. Linear regression did not demonstrate performance drift over the testing period. CONCLUSIONS: We implemented and silently deployed a real-time ML algorithm for predicting surgery duration. Prospective evaluation showed that model performance was preserved over a 10-month testing period.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。