Neural pathways and computations that achieve stable contrast processing tuned to natural scenes.

阅读:3
作者:Gür Burak, Ramirez Luisa, Cornean Jacqueline, Thurn Freya, Molina-Obando Sebastian, Ramos-Traslosheros Giordano, Silies Marion
Natural scenes are highly dynamic, challenging the reliability of visual processing. Yet, humans and many animals perform accurate visual behaviors, whereas computer vision devices struggle with rapidly changing background luminance. How does animal vision achieve this? Here, we reveal the algorithms and mechanisms of rapid luminance gain control in Drosophila, resulting in stable visual processing. We identify specific transmedullary neurons as the site of luminance gain control, which pass this property to direction-selective cells. The circuitry further involves wide-field neurons, matching computational predictions that local spatial pooling drive optimal contrast processing in natural scenes when light conditions change rapidly. Experiments and theory argue that a spatially pooled luminance signal achieves luminance gain control via divisive normalization. This process relies on shunting inhibition using the glutamate-gated chloride channel GluClα. Our work describes how the fly robustly processes visual information in dynamically changing natural scenes, a common challenge of all visual systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。