Electrochemical Reduction of the Carbonyl Functional Group: The Importance of Adsorption Geometry, Molecular Structure, and Electrode Surface Structure.

阅读:4
作者:Bondue Christoph J, Koper Marc T M
This paper studies the electrochemical hydrogenation of the carbonyl functional group of acetophenone and 4-acetylpyridine at platinum single-crystal electrodes. Comparison with results obtained for the hydrogenation of acetone featuring an isolated carbonyl functional group reveals the influence of the phenyl ring and the pyridine ring, respectively. Lack of acetone adsorption at Pt(111) and Pt(100) due to a weak interaction between surface and carbonyl functional group renders these surfaces inactive for the hydrogenation of acetone. Adsorption through a strong interaction with the phenyl ring of acetophenone activates the Pt(111) and Pt(100) surfaces for hydrogenation of the acetyl substituent. In agreement with previous results for acetone reduction, the Pt(100) surface is specifically active for the hydrogenolysis reaction, breaking the C-O bond, whereas the other surfaces only hydrogenate the carbonyl functionality. In contrast to the phenyl ring, the pyridine ring has a very different effect: due to the dominant interaction of the N atom of the pyridine ring with the platinum electrode, a vertical adsorption mode is realized. The resulting large physical distance between the carbonyl functional group and the electrode surface inhibits the hydrogenation at all platinum surfaces. This also holds for the Pt(110) electrode, which is otherwise active for the electrochemical hydrogenation of the isolated carbonyl functional group of aliphatic ketones. Our results show how the combination of molecular structure of the reactant and surface structure of the catalyst determine the selective electroreduction of functionalized ketones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。