The antioxidant activity of drugs, as well as the influence of drugs on the activity of endogenous antioxidant mechanisms in the human body is of great importance for the course of the disease and the treatment process. Due to the need to search for new therapeutic methods, the study of newly synthesized substances with potential therapeutic activity is necessary. This study aimed to designate some properties and characteristic parameters of new, synthetic quinoline three derivatives-1-methyl-3-allylthio-4-(4'-methylphenylamino)quinolinium bromide (Qui1), 1-methyl-3-allylthio-4-(3'-hydroxyphenylamino)quinolinium bromide (Qui2) as well as 1-methyl-3-allylthio-4-(4'-hydroxyphenylamino)quinolinium bromide (Qui3), including their antioxidant properties, as well as to analyse their activity as the potential modulators of Human Serum Albumin (HSA) antioxidant activity. In order to achieve the goal of the study, spectroscopic methods such as UV-Vis and circular dichroism (CD) spectroscopy have been used and based on the obtained data only slight and probably some surface interaction of quinoline derivatives (Qui1-Qui3) with HSA have been observed. The effect of Qui1-Qui3 on the HSA secondary structure was also insignificant. All analysed quinine derivatives have antioxidant activity against ABTS cation radical, in turn against DPPH radical, only Qui3 has noticeable antioxidant potential. The highest reduction potential by Qui3 as well as (Qui3 + HSA)(complex) has been shown. Qui3 mixed with HSA has mostly the synergistic effect against DPPH, ABTS and FRAP, while Qui1 and Qui2 in the presence of HSA mostly have a synergistic and additive effect towards ABTS, respectively. Based on the obtained results it can be concluded that Qui2 and Qui3 can be considered potential modulators of HSA antioxidant activity.
New Synthetic Quinoline (Qui) Derivatives as Novel Antioxidants and Potential HSA's Antioxidant Activity Modulators-Spectroscopic Studies.
阅读:3
作者:Rogóż Wojciech, Owczarzy Aleksandra, Kulig Karolina, ZiÄba Andrzej, MaciÄ Å¼ek-Jurczyk MaÅgorzata
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2022 | 起止号: | 2022 Dec 30; 28(1):320 |
| doi: | 10.3390/molecules28010320 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
