Fluorine-Lean Phosphonated Polymers of Intrinsic Microporosity with High Oxygen Permeability as a PEMFC Catalyst Layer Ionomer.

阅读:11
作者:Stigler Theresa, Nemeth Tamas, Fortin Patrick, Thiele Simon, Kerres Jochen
An essential component of proton exchange membrane fuel cell (PEMFC) technology is the catalyst layer ionomer, serving as the binder and transport matrix responsible for the macroporous electrode structure and the regulation of proton and reactant gas supply to the catalyst interface. To improve the mass transport properties of the catalyst layer, we developed a fluorine-lean phosphonated polymer of intrinsic microporosity (pPIM). The highly kinked structure of the pPIM results in an ionomeric network with increased porosity to promote enhanced gas diffusion through the ionomer layer, while the incorporation of phosphonic acid head groups provides efficient proton conduction. Increased gas permeability of the ionomer is an important factor for effectively mitigating local transport losses that typically occur at high current densities. In situ PEMFC tests were carried out where the pPIM was utilized as the ionomer in the catalyst layer on both the anode and the cathode side. The ionomer-to-carbon (I/C) ratio was varied to evaluate its impact on the oxygen diffusion coefficient and overall fuel cell performance. A higher oxygen diffusion coefficient was achieved with the pPIM using an I/C ratio of 0.2, compared to the Nafion-based catalyst layer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。