Artificial neural network to predict post-operative hypocalcemia following total thyroidectomy.

阅读:12
作者:Rao Karthik Nagaraja, Arora Ripudaman, Rajguru Renu, Nagarkar Nitin M
The primary objective of this study was to use artificial neural network (ANN) to predict the post operative hypocalcemia and severity of hypocalcemia following total thyroidectomy. The secondary objective was to determine the weightage for the factors predicting the hypocalcemia with the ANN. A single center, retrospective case series included treatment-naive patients undergoing total thyroidectomy for benign or malignant thyroid nodules from January 2020 to December 2022. Artificial neural network (ANN) - Multilayer Perceptron (MLP) used to predict post-operative hypocalcemia in ANN. Multivariate analysis was used construct validity. The data of 196 total thyroidectomy cases was used for training and testing. The mean incorrect prediction during training and testing was 3.18% (± σ = 0.65%) and 3.66% (± σ = 1.88%) for hypocalcemia. The cumulative Root-Mean-Square-Error (RMSE) for MLP model was 0.29 (± σ = 0.02) and 0.32 (± σ = 0.04) for training and testing, respectively. Area under ROC was 0.98 for predicting hypocalcemia 0.942 for predicting the severity of hypocalcemia. Multivariate analysis showed lower levels of post operative parathormone levels to be predictor of hypocalcemia (p < 0.01). The maximum weightage given to iPTH (100%) > Need for sternotomy (28.55%). Our MLP NN model predicted the post-operative hypocalcemia in 96.8% of training samples and 96.3% of testing samples, and severity in 92.8% of testing sample in 10 generations. however, it must be used with caution and always in conjunction with the expertise of the surgical team. Level of Evidence - 3b. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12070-024-04608-9.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。