High-resolution detection of ATP release from single cultured mouse dorsal horn spinal cord glial cells and its modulation by noradrenaline.

阅读:6
作者:Eersapah Varen, Hugel Sylain, Schlichter Rémy
Human embryonic kidney 293 (HEK293) cells stably transfected with the rat P2X2 receptor subunit were preincubated with 200 nM progesterone (HEK293-P2X2-PROG), a potent positive allosteric modulator of homomeric P2X2 receptors, and used to detect low nanomolar concentrations of extracellular ATP. Fura-2-loaded HEK293-P2X2-PROG cells were acutely plated on top of cultured DH glial cells to quantify ATP release from single DH glial cells. Application of the α1 adrenoceptor agonist phenylephrine (PHE, 20 μM) or of a low K(+) (0.2 mM) solution evoked reversible increases in the intracellular calcium concentration ([Ca(2+)](i)) in the biosensor cells. A reversible increase in [Ca(2+)](i) was also detected in half of the biosensor cells following the interruption of general extracellular perfusion. All increases in [Ca(2+)](i) were blocked in the presence of the P2X2 antagonist PPADS or after preloading the glial cells with the calcium chelator BAPTA, indicating that they were due to calcium-dependent ATP release from the glial cells. ATP release induced by PHE was blocked by -L-phenylalanine 2-naphtylamide (GPN) that permeabilizes secretory lysosomes and bafilomycin A1 (Baf A1), an inhibitor of the H(+)-pump of acidic secretory vesicles. By contrast, ATP release induced by application of a low-K(+) solution was abolished by Baf A1 but not by GPN. Finally, spontaneous ATP release observed after interrupting general perfusion was insensitive to both GPN and Baf A1 pretreatment. Our results indicate that ATP is released in a calcium-dependent manner from two distinct vesicular pools and one non-vesicular pool coexisting in DH glial cells and that noradrenaline and PHE selectively target the secretory lysosome pool.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。