The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations.

阅读:7
作者:Liu Ju, Yang Weiguang, Dong Melody, Marsden Alison L
We develop a novel iterative solution method for the incompressible Navier-Stokes equations with boundary conditions coupled with reduced models. The iterative algorithm is designed based on the variational multiscale formulation and the generalized-α scheme. The spatiotemporal discretization leads to a block structure of the resulting consistent tangent matrix in the Newton-Raphson procedure. As a generalization of the conventional block preconditioners, a three-level nested block preconditioner is introduced to attain a better representation of the Schur complement, which plays a key role in the overall algorithm robustness and efficiency. This approach provides a flexible, algorithmic way to handle the Schur complement for problems involving multiscale and multiphysics coupling. The solution method is implemented and benchmarked against experimental data from the nozzle challenge problem issued by the US Food and Drug Administration. The robustness, efficiency, and parallel scalability of the proposed technique are then examined in several settings, including moderately high Reynolds number flows and physiological flows with strong resistance effect due to coupled downstream vasculature models. Two patient-specific hemodynamic simulations, covering systemic and pulmonary flows, are performed to further corroborate the efficacy of the proposed methodology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。