Sophisticated temporal pattern recognition in retinal ganglion cells.

阅读:5
作者:Schwartz Greg, Berry Michael J 2nd
Pattern recognition is one of the most important tasks of the visual system, and uncovering the neural mechanisms underlying recognition phenomena has been a focus of researchers for decades. Surprisingly, at the earliest stages of vision, the retina is capable of highly sophisticated temporal pattern recognition. We stimulated the retina of tiger salamander (Ambystoma tigrinum) with periodic dark flash sequences and found that retinal ganglion cells had a wide variety of different responses to a periodic flash sequence with many firing when a flash was omitted. The timing of the omitted stimulus response (OSR) depended on the period, with individual cells tracking the stimulus period down to increments of 5 ms. When flashes occurred earlier than expected, cells updated their expectation of the next flash time by as much as 50 ms. When flashes occurred later than expected, cells fired an OSR and reset their temporal expectation to the average time interval between flashes. Using pharmacology to investigate the retinal circuitry involved, we found that inhibitory transmission from amacrine cells was not required, but on bipolar cells were required. The results suggest a mechanism in which the intrinsic resonance of on bipolars leads to the OSR in ganglion cells. We discuss the implications of retinal pattern recognition on the neural code of the retina and visual processing in general.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。