This study evaluated efficacy of high-intensity ultrasound (HIU) on controlling or stimulating Staphylococcus aureus biofilm. Acoustic pressure distribution on the surface of glass slide cultivated S. aureus biofilm was first simulated as a standardized parameter to reflect sono-effect. When the power of HIU was 240Â W with acoustic pressure of -1.38Ã10(5) Pa, a reasonably high clearance rate of S. aureus biofilm was achieved (96.02%). As an all-or-nothing technique, the HIU did not cause sublethal or injury of S. aureus but inactivate the cell directly. A further evaluation of HIU-induced stimulation of biofilm was conducted at a low power level (i.e. 60Â W with acoustic pressure of -6.91Ã10(4) Pa). The low-power-long-duration HIU treatment promoted the formation of S. aureus biofilm and enhanced its resistance as proved by transcriptional changes of genes in S. aureus, including up-regulations of rbf, sigB, lrgA, icaA, icaD, and down-regulation of icaR. These results indicate that the choose of input power is determined during the HIU-based cleaning and processing. Otherwise, the growth of S. aureus and biofilm formation are stimulated when treats by an insufficiently high power of HIU.
Combined an acoustic pressure simulation of ultrasonic radiation and experimental studies to evaluate control efficacy of high-intensity ultrasound against Staphylococcus aureus biofilm.
阅读:3
作者:Yu Hang, Liu Yang, Yang Fangwei, Xie Yunfei, Guo Yahui, Cheng Yuliang, Yao Weirong
| 期刊: | Ultrasonics Sonochemistry | 影响因子: | 9.700 |
| 时间: | 2021 | 起止号: | 2021 Nov;79:105764 |
| doi: | 10.1016/j.ultsonch.2021.105764 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
